and $E^0_{\ce{Pb^{2+}|Pb}}=\pu{-0.126V}$, I first found the $\ce{Pb^{2+}}$ concentration in the oxidation half cell using the sulphate ion concentration and the solubility product of lead sulpahte ($2.53\times10^{-8}$) and found the concentration to be $(2.53\times10^{-7})$ Thanks for contributing an answer to Chemistry Stack Exchange! Therefore the emf must be negative and E = – 0.59 V. Example \(\PageIndex{2}\) : Voltmeter Readings, If the voltmeter in Figure 17.5 reads 1.10 V, what is the emf for the cell, \[\ce{Cu} \mid \ce{Cu^{2+}(1 M)} \parallel \ce{Zn^{2+}(1 M)} \mid \ce{Zn}\], In this case the shorthand notation corresponds to the reverse of Eq. Since we want to be the left-hand electrode, this must be reversed and the sign of E° must be changed: \[\ce{Hg(l)} \mid \ce{Hg^{2+} (1 M)} \parallel \ce{H^{+}(1 M)} \mid {H_{2}(1 atm), Pt E^{o} = – 0.85 V}\label{10}\], For the other electrode Table \(\PageIndex{1}\) gives, \[\ce{Pt, H_{2}(1 atm)} \mid \ce{H^{+}(1 M)} \parallel \ce{Br^{–}(1 M)} \mid \ce{Br_{2}(l), Pt E^{o} = +1.07 V}\label{11}\], Adding the cells of Eqs. राम and राम् when used in a sentence? \(\ref{5}\) above, the E° is + 0.34 V. For the Zn2+│Zn redox couple, we find E° = – 0.76 V in Table 17.1. The emf of this cell is found to be 0.42 volt. Then using the Nernst equation, I need a help about polyphony, will 128 be enough. We have already seen that this cell as written corresponds to a nonspontaneous reaction. $$E_{\text{cell}}=E^0_{\text{cell}}-\frac{RT}{nF}\ln\frac{[\text{Products}]}{[\text{Reactants}]}$$ Why is social engineering often excluded from bug bounties? A cell is characterized by its voltage. The only thing that depends on the cell voltage is the chemica… 12.3 Electromotive Force and Thermodynamics. $n=2$, Is it possible in Sanskrit to distinguish between the names Rama and Ram i.e. Electrons move from the side getting oxidized to the side getting reduced, and you can measure a difference in electric potential. The difference in potentials of the two half – cells of a cell arises due to the flow of electrons from anode … If the element is not under tandard conditions, you need to use the extended version of Nernst's law, i.e. \(\ref{4}\) shows this cell in reverse, we change the sign of E°, obtaining + 0.76 V. Thus we can combine standard reduction potentials from Table 1 to obtain emf's for cells like Eq. … What does it mean for a polynomial to be the 'best' approximation of a function around a point? How to calculate the electromotive force of a silver chloride/ silver bromide cell? 17.10: Electromotive Force of Galvanic Cells, [ "article:topic", "standard reduction potential", "electrical potential difference", "volt", "electromotive force", "authorname:chemprime", "showtoc:no", "license:ccbyncsa" ], Ed Vitz, John W. Moore, Justin Shorb, Xavier Prat-Resina, Tim Wendorff, & Adam Hahn, Chemical Education Digital Library (ChemEd DL), the section on Cell Notation and Conventions, \(\ce{F_{2}(g) + 2}e^– \ce{/rightarrow 2F^{–} (aq)}\), \(\ce{Co^{3+}(aq) + }e^– \ce{/rightarrow Co^{2+}(aq)}\), \(\ce{Au^{+}(aq) + }e^– \ce{\rightarrow Au(s)}\), \(\ce{H_{2}O_{2}(aq) + 2H_{3}O^{+}(aq) + 2}e^– \ce{\rightarrow 4H_{2}O(l)}\), \(\ce{Ce^{4+}(aq) + }e^– \ce{\rightarrow Ce^{3+}(aq)}\), \(\ce{Pb^{4+}(aq) + 2}e^– \ce{\rightarrow Pb^{2+}(aq)}\), \(\ce{PbO_{2}(s) + SO_{4}^{2−}(aq) + 4H_{3}O^{+}(aq) + 2}e^– \ce{\rightarrow PbSO_{4}(s) + 6H_{2}O(l)}\), \(\ce{NiO_{2}(s) + 4H_{3}O^{+}(aq) + 2}e^– \ce{\rightarrow Ni^{2+}(aq) + 6H_{2}O(l)}\), \(\ce{2HClO(aq) + 2H_\ce{3}O^\ce{+}(aq) + 2}e^– \ce{\rightarrow Cl_{2}(g) + 4H_{2}O(l)}\), \(\ce{Au^{3+}(aq) + 3}e^− \ce{\rightarrow Au(s)}\), \(\ce{MnO_4^{−}(aq) + 8H_{3}O^{+}(aq) + 5}e^– \ce{\rightarrow Mn^{2+}(aq) + 12H_{2}O(l)}\), \(\ce{BrO_{3}^{−}(aq) + 6H_{3}O^{+}(aq) + 5}e^− \ce{\rightarrow \frac{1}{2} Br_{2}(aq) + 9H_{2}O(l)}\), \(\ce{2ClO_{3}^{−}(aq) + 12H_{3}O^{+}(aq) + 10}e^– \ce{\rightarrow Cl_{2}(g) + 18H_{2}O(l)}\), \(\ce{Cr_{2}O_{7}^{2−}(aq) + 14H_{3}O^{+}(aq) + 6}e^– \ce{\rightarrow 2Cr^{3+}(aq) + 21H_{2}O(l)}\), \(\ce{Cl_{2} (g) + 2}e^− \ce{\rightarrow 2Cl^{−}(aq)}\), \(\ce{N_{2}H_{5}^+(aq) + 3H_{3}O^{+}(aq) + 2}e^- \ce{\rightarrow 2NH_{4}^{+}(aq) + 3H_{2}O(l)}\), \(\ce{MnO_{2}(s) + 4H_{3}O^+(aq) + 2}e^– \ce{\rightarrow Mn^{2+}(aq) + 6H_{2}O(l)}\), \(\ce{O_{2}(g) + 4H_{3}O^{+}(aq) + 4}e^– \ce{\rightarrow 6H_{2}O(l)}\), \(\ce{ClO_{4}^{−}(aq) + 2H_{3}O^{+}(aq) + 2}e^– \ce{\rightarrow ClO_{3}^{−}(aq) + 3H_{2}O(l)}\), \(\ce{IO_{3}^{−}(aq) + 6H_{3}O^+(aq) + 5}e^– \ce{\rightarrow \frac{1}{2} I_{2}(aq) + 9H_{2}O(l)}\), \(\ce{Pt^{2+}(aq) + 2}e^− \ce{\rightarrow Pt(s)}\), \(\ce{Br_{2}(l) + 2}e^− \ce{\rightarrow 2Br^{-}(aq)}\), \(\ce{AuCl_{4}^{−}(aq) + 3}e^- \ce{\rightarrow Au(s) + 4Cl^{−}(aq)}\), \(\ce{NO_{3}^{−}(aq) + 4H_{3}O^{+}(aq) + 3}e^{–} \ce{\rightarrow NO(g) + 6H_{2}O(l)}\), \(\ce{NO_{3}^{−}(aq) + 3H_{3}O^+(aq) + 2}e^– \ce{\rightarrow HNO_{2}(aq) + 4H_{2}O(l)}\), \(\ce{Pd^{2+}(aq) + 2}e^− \ce{\rightarrow Pd(s)}\), \(\ce{2Hg^{2+}(aq) +2}e^− \ce{\rightarrow Hg_{2}^{2+}(aq)}\), \(\ce{Hg^{2+}(aq) +2}e^− \ce{\rightarrow Hg(l)}\), \(\ce{SbCl_{6}^{−}(aq) + 2}e^− \ce{\rightarrow SbCl_{4}^{−}(aq) + 2Cl^{−}(aq)}\), \(\ce{Ag^{+}(aq) + }e^− \ce{\rightarrow Ag(s)}\), \(\ce{Hg_{2}^{2+}(aq) + 2}e^- \ce{\rightarrow 2Hg(l)}\), \(\ce{Fe^{3+}(aq) + }e^− \ce{\rightarrow Fe^{2+}(aq)}\), \(\ce{[PtCl_{4}]^{2−}(aq) + 2}e^- \ce{\rightarrow Pt(s) + 4Cl^{–}(aq)}\), \(\ce{[PtCl_{6}]^{2−}(aq) + 2}e^− \ce{\rightarrow [PtCl_4]^{2−}(aq) + 2Cl^{–}(aq)}\), \(\ce{O_{2}(g) + 2H_{3}O^{+}(aq) + 2}e^– \ce{\rightarrow H_{2}O_{2}(aq) + 2H_{2}O(l)}\), \(\ce{TeO_{2}(s) + 4H_{3}O^+(aq) + 4}e^– \ce{\rightarrow Te(s) + 6H_{2}O(l)}\), \(\ce{H_{3}AsO_{4}(aq) + 2H_{3}O^{+}(aq) + 2}e^− \ce{\rightarrow HAsO_{2}(aq) + 4H_{2}O(l)}\), \(\ce{I_{2}(s) + 2}e^− \ce{\rightarrow 2I^{−}(aq)}\), \(\ce{Cu^{+}(aq) + }e^− \ce{\rightarrow Cu(s)}\), \(\ce{[RhCl_{6}]^{3−}(aq) + 3}e^− \ce{\rightarrow Rh(s) + 6Cl^{–}(aq)}\), \(\ce{Cu^{2+}(aq) + 2}e^− \ce{\rightarrow Cu(s)}\), \(\ce{Hg_{2}Cl_{2}(s) + 2}e^− \ce{\rightarrow 2Hg(l) + 2Cl^{−}(aq)}\), \(\ce{AgCl(s) + }e^− \ce{\rightarrow Ag(s) + Cl^{−}(aq)}\), \(\ce{Cu^{2+}(aq) + }e^− \ce{\rightarrow Cu^{+}(aq)}\), \(\ce{SO_{4}^{2−}(aq) + 4H_{3}O^{+}(aq) + 2}e^– \ce{\rightarrow H_{2}SO_{3}(aq) + 5H_{2}O(l)}\), \(\ce{Sn^{4+}(aq) + 2}e^− \ce{\rightarrow Sn^{2+}(aq)}\), \(\ce{S(s) + 2H_{3}O^{+}(aq) + 2}e^– \ce{\rightarrow H_{2}S(aq) + 2H_{2}O(l)}\), \(\ce{AgBr(s) + }e^− \ce{\rightarrow Ag(s) + Br^{−}(aq)}\), \(\ce{2H_{3}O^{+}(aq) + 2}e^– \ce{\rightarrow 2H_{2}(g) + 2H_{2}O(l )}\) (reference electrode), \(\ce{N_{2}O(g) + 6H_{3}O^{+}(aq) + 4}e^– \ce{\rightarrow 2NH_{3}OH^{+}(aq) + 5H_{2}O(l)}\), \(\ce{HgS(s, black) + 2H_{3}O^{+}(aq) + 2}e^– \ce{\rightarrow Hg(l) + H_{2}S(g) + 2H_{2}O(l)}\), \(\ce{Se(s) + 2H_{3}O^{+}(aq) + 2}e^– \ce{\rightarrow H_{2}Se(aq) + 2H_{2}O(l)}\), \(\ce{Pb^{2+}(aq) + 2}e^− \ce{\rightarrow Pb(s)}\), \(\ce{Sn^{2+}(aq) + 2}e^− \ce{\rightarrow Sn(s)}\), \(\ce{AgI(s) + }e^− \ce{\rightarrow Ag(s) + I^{−}(aq)}\), \(\ce{[SnF_6]^{2–}(aq) + 4}e^− \ce{\rightarrow Sn(s) + 6F^{−}(aq)}\), \(\ce{Ni^{2+}(aq) + 2}e^− \ce{\rightarrow Ni(s)}\), \(\ce{Co^{2+}(aq) + 2}e^− \ce{\rightarrow Co(s)}\), \(\ce{Tl^{+}(aq) + }e^− \ce{\rightarrow Tl(s)}\), \(\ce{PbSO_{4}(s) + 2}e^− \ce{\rightarrow Pb(s) + SO_{4}^{2−}(aq)}\), \(\ce{Cd^{2+}(aq) + 2}e^− \ce{\rightarrow Cd(s)}\), \(\ce{Cr^{3+}(aq) + }e^− \ce{\rightarrow Cr^{2+}(aq)}\), \(\ce{Fe^{2+}(aq) + 2}e^− \ce{\rightarrow Fe(s)}\), \(\ce{2CO_{2}(g) + 2H_{3}O^{+}(aq) + 2}e^– \ce{\rightarrow (COOH)_{2}(aq) + 2H_{2}O(l)}\), \(\ce{Ga^{3+}(aq) + 3}e^− \ce{\rightarrow Ga(s)}\), \(\ce{Cr^{3+}(aq) + 3}e^− \ce{\rightarrow Cr(s)}\), \(\ce{Zn^{2+}(aq) + 2}e^− \ce{\rightarrow Zn(s)}\), \(\ce{Cr^{2+}(aq) + 2}e^− \ce{\rightarrow Cr(s)}\), \(\ce{V^{2+}(aq) + 2}e^− \ce{\rightarrow V(s)}\), \(\ce{Mn^{2+}(aq) + 2}e^− \ce{\rightarrow Mn(s)}\), \(\ce{Zr^{4+}(aq) + 4}e^− \ce{\rightarrow Zr(s)}\), \(\ce{Al^{3+}(aq) + 3}e^− \ce{\rightarrow Al(s)}\), \(\ce{H_{2}(g) + 2}e^− \ce{\rightarrow 2H^{−}(aq)}\), \(\ce{Mg^{2+}(aq) + 2}e^− \ce{\rightarrow Mg(s)}\), \(\ce{Na^{+}(aq) + }e^− \ce{\rightarrow Na(s)}\), \(\ce{Ca^{2+}(aq) + 2}e^− \ce{\rightarrow Ca(s)}\), \(\ce{Sr^{2+}(aq) + 2}e^− \ce{\rightarrow Sr(s)}\), \(\ce{Ba^{2+}(aq) + 2}e^- \ce{\rightarrow Ba(s)}\), \(\ce{Rb^{+}(aq) + }e^− \ce{\rightarrow Rb(s)}\), \(\ce{K^{+}(aq) + }e^− \ce{\rightarrow K(s)}\), \(\ce{Li^{+}(aq) + }e^− \ce{\rightarrow Li(s)}\), \(\ce{ClO^{–}(aq) + H_{2}O(l) + 2}e^– \ce{\rightarrow Cl^{–}(aq) + 2OH^{–}(aq)}\), \(\ce{OOH^{-}(aq) + H_{2}O(l) + 2}e^– \ce{\rightarrow 3OH^{–}(aq)}\), \(\ce{2NH_{2}OH(aq) + 2}e^– \ce{\rightarrow N_{2}H_{4}(aq) + 2OH^{-}(aq)}\), \(\ce{ClO_{3}^{–}(aq) + 3H_{2}O(l) + 6}e^– \ce{\rightarrow Cl^{–}(aq) + 6OH^{–}(aq)}\), \(\ce{MnO_{4}^{–}(aq) + 2H_{2}O(l) + 3}e^– \ce{\rightarrow MnO_{2}(s) + 4OH^{–}(aq)}\), \(\ce{MnO_{4}^{–}(aq) + }e^– \ce{\rightarrow MnO_{4}^{2–}(aq)}\), \(\ce{NiO_{2}(s) + 2H_{2}O(l) + 2}e^– \ce{\rightarrow Ni(OH)_{2}(s) + 2OH^{–}(aq)}\), \(\ce{Ag_{2}CrO_{4}^{–}(s) + 2}e^– \ce{\rightarrow 2Ag(s) + CrO_{4}^{2–}(aq)}\), \(\ce{O_{2}(g) + 2H_{2}O(l) + 4}e^– \ce{\rightarrow 4OH^{–}(aq)}\), \(\ce{ClO_{4}^{–}(aq) + H_{2}O(l) + 2}e^– \ce{\rightarrow ClO_{3}^{–}(aq) + 2OH^{–}(aq)}\), \(\ce{Ag_{2}O(s) + H_{2}O(l) + 2}e^– \ce{\rightarrow 2Ag(s) + 2OH^{–}(aq)}\), \(\ce{2NO_{2}^{–}(aq) + 3H_{2}O(l) + 4}e^– \ce{\rightarrow N_{2}O(g) + 6OH^{–}(aq)}\), \(\ce{[Co(NH_{3})_{6}]^{3+}(aq) + }e^- \ce{\rightarrow [Co(NH_{3})_{6}]^{3+}(aq)}\), \(\ce{HgO(s) + H_{2}O(l) + 2}e^– \ce{\rightarrow Hg(l) + 2OH^{–}(aq)}\), \(\ce{O_{2}(g) + H_{2}O(l) + 2}e^– \ce{\rightarrow OOH^{–}(aq) + OH^{–}(aq)}\), \(\ce{NO_{3}^{-}(aq) + H_{2}O(l) + 2}e^– \ce{\rightarrow NO_{2}^{–}(aq) + 2OH^{–}(aq)}\), \(\ce{MnO_{2}(s) + 2H_{2}O(l) + 2}e^– \ce{\rightarrow Mn(OH)_{2}(s) + 2OH^{–}(aq)}\), \(\ce{CrO_{4}^{2–}(aq) + 4H_{2}O(l) + 3}e^– \ce{\rightarrow Cr(OH)_{3}(s) + 5OH^{–}(aq)}\), \(\ce{Cu_{2}O(s) + H_{2}O(l) + 2}e^– \ce{\rightarrow 2Cu(s) + 2OH^{–}(aq)}\), \(\ce{FeO_{2}(aq) + H_{2}O(l) + 2}e^– \ce{\rightarrow HFeO_{2}^{–}(aq) + OH^{–}(aq)}\), \(\ce{2H_{2}O(l) + 2}e^– \ce{\rightarrow H_{2}(g) + 2OH^{–}(aq)}\), \(\ce{2NO_{3}^{–}(aq) + 2H_{2}O(l) + 2}e^– \ce{\rightarrow N_{2}O_{4}(g) + 4OH^{–}(aq)}\), \(\ce{HFeO_{2}^{-}(aq) + 2}e^– \ce{\rightarrow Fe(s) + 3OH^{–}(aq)}\), \(\ce{SO_{4}^{2–}(aq) + H_{2}O(l) + 2}e^– \ce{\rightarrow SO_{3}^{2–}(aq) + 2OH^{–}(aq)}\), \(\ce{N_{2}(g) + 4H_{2}O(l) + 4}e^– \ce{\rightarrow N_{2}H_{4}(aq) + 4OH^{–}(aq)}\), \(\ce{[Zn(OH)_{4}]^{2–}(aq) + 2}e^– \ce{\rightarrow Zn(s) + 4OH^{–}(aq)}\), \(\ce{Zn(OH)_{2}(s) + 2}e^{–} \ce{\rightarrow Zn(s) + 2OH^{–}(aq)}\), \(\ce{[Zn(CN)_{4}]^{2–}(aq) + 2}e^– \ce{\rightarrow Zn(s) + 4CN^{–}(aq)}\), \(\ce{Cr(OH)_{3}(s) + 3}e^– \ce{\rightarrow Cr(s) + 3OH^{–}(aq)}\), \(\ce{SiO_{3}^{2–}(aq) + 3H_{2}O(l) + 4}e^– \ce{\rightarrow Si(s) + 6OH^{–}(aq)}\).